Africa Map

African Press Agency

African Press Agency Logo
   

 Home
 Country Profile
 Useful Links
 Contact us

Home

Quantum computersBack
[Published: Monday March 11 2019]

Race to make Quantum computers work

LONDON, 11 March. - (ANA) - Deep beneath the Franco-Swiss border, the Large Hadron Collider is sleeping. But it won’t be quiet for long. Over the coming years, the world’s largest particle accelerator will be supercharged, increasing the number of proton collisions per second by a factor of two and a half. Once the work is complete in 2026, researchers hope to unlock some of the most fundamental questions in the universe. But with the increased power will come a deluge of data the likes of which high-energy physics has never seen before. And, right now, humanity has no way of knowing what the collider might find.

To process the looming data torrent, scientists at the European Organization for Nuclear Research, or CERN, will need 50 to 100 times more computing power than they have at their disposal today. A proposed Future Circular Collider, four times the size of the LHC and 10 times as powerful, would create an impossibly large quantity of data, at least twice as much as the LHC.

In a bid to make sense of the impending data deluge, some at CERN are turning to the emerging field of quantum computing. Powered by the very laws of nature the LHC is probing, such a machine could potentially crunch the expected volume of data in no time at all. What’s more, it would speak the same language as the LHC. While numerous labs around the world are trying to harness the power of quantum computing, it is the future work at CERN that makes it particularly exciting research. There’s just one problem: Right now, there are only prototypes; nobody knows whether it’s actually possible to build a reliable quantum device.

Traditional computers—be it an Apple Watch or the most powerful supercomputer—rely on tiny silicon transistors that work like on-off switches to encode bits of data. Each circuit can have one of two values—either one (on) or zero (off) in binary code; the computer turns the voltage in a circuit on or off to make it work.

A quantum computer is not limited to this “either/or” way of thinking. Its memory is made up of quantum bits, or qubits—tiny particles of matter like atoms or electrons. And qubits can do “both/and,” meaning that they can be in a superposition of all possible combinations of zeros and ones; they can be all of those states simultaneously.

FOR CERN, THE quantum promise could, for instance, help its scientists find evidence of supersymmetry, or SUSY, which so far has proven elusive. At the moment, researchers spend weeks and months sifting through the debris from proton-proton collisions in the LCH, trying to find exotic, heavy sister-particles to all our known particles of matter. The quest has now lasted decades, and a number of physicists are questioning if the theory behind SUSY is really valid. A quantum computer would greatly speed up analysis of the collisions, hopefully finding evidence of supersymmetry much sooner—or at least allowing us to ditch the theory and move on.

A quantum device might also help scientists understand the evolution of the early universe, the first few minutes after the Big Bang. Physicists are pretty confident that back then, our universe was nothing but a strange soup of subatomic particles called quarks and gluons. To understand how this quark-gluon plasma has evolved into the universe we have today, researchers simulate the conditions of the infant universe and then test their models at the LHC, with multiple collisions. Performing a simulation on a quantum computer, governed by the same laws that govern the very particles that the LHC is smashing together, could lead to a much more accurate model to test.

Beyond pure science, banks, pharmaceutical companies, and governments are also waiting to get their hands on computing power that could be tens or even hundreds of times greater than that of any traditional computer.

And they’ve been waiting for decades. Google is in the race, as are IBM, Microsoft, Intel and a clutch of startups, academic groups, and the Chinese government. The stakes are incredibly high. Last October, the European Union pledged to give $1 billion to over 5,000 European quantum technology researchers over the next decade, while venture capitalists invested some $250 million in various companies researching quantum computing in 2018 alone. “This is a marathon,” says David Reilly, who leads Microsoft’s quantum lab at the University of Sydney, Australia. “And it's only 10 minutes into the marathon.”

Despite the hype surrounding quantum computing and the media frenzy triggered by every announcement of a new qubit record, none of the competing teams have come close to reaching even the first milestone, fancily called quantum supremacy—the moment when a quantum computer performs at least one specific task better than a standard computer. Any kind of task, even if it is totally artificial and pointless. There are plenty of rumors in the quantum community that Google may be close, although if true, it would give the company bragging rights at best, says Michael Biercuk, a physicist at the University of Sydney and founder of quantum startup Q-CTRL. “It would be a bit of a gimmick—an artificial goal,” says Reilly “It’s like concocting some mathematical problem that really doesn’t have an obvious impact on the world just to say that a quantum computer can solve it.”

That’s because the first real checkpoint in this race is much further away. Called quantum advantage, it would see a quantum computer outperform normal computers on a truly useful task. (Some researchers use the terms quantum supremacy and quantum advantage interchangeably.) And then there is the finish line, the creation of a universal quantum computer. The hope is that it would deliver a computational nirvana with the ability to perform a broad range of incredibly complex tasks. At stake is the design of new molecules for life-saving drugs, helping banks to adjust the riskiness of their investment portfolios, a way to break all current cryptography and develop new, stronger systems, and for scientists at CERN, a way to glimpse the universe as it was just moments after the Big Bang.  - (ANA) -

AB/ANA/11 March 2019 - - -

 

 

 


North South News website

Advertise banner

News icon Global/Plastics Issue
News icon Europe/Extreme Heat
News icon WHO/Sudan
News icon Tanzania/Floods
News icon ILO/Social Protection
News icon Arab League/US Veto
News icon Renewable energy
News icon US/Injustice
News icon US/Students Protest
News icon Syria/Crisis

AFRICAN PRESS AGENCY Copyright © 2005 - 2007